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Abstract—The problem considered is the equilibrium of a semi-infinite cone, truncated a fixed distance from
its apparent apex. The cone is assumed to be loaded on its end surface of truncation, with the ruled sides
being free from stress. The present formulation does not require that this loading be axisymmetric.

Total-stress end loading problems are formulated in terms of the three stress variables prescriptible on the
truncated end and three auxiliary variables, of the order of stresses with respect to differentiation. The three
auxiliary variables carry the displacement information on the end surface and permit the integration of three
of the Beltrami equations of compatibility.

The six-vector satisfies a matrix partial differential equation whose constituent equations are obtained
from the three integrated Beltrami equations, the defining equations for the auxiliary variables, and the
equation of equilibrium containing the variables prescriptible on the truncated surface. The remaining
equations of equilibrium are used to determine the stress variables not in the six vector.

A separation of variables of the matrix equation yields a non-selfadjoint matrix differential equation,
hence the eigenfunctions are non-orthogonal. A biorthogonality relation is derived from consideration of the
adjoint problem to permit the numerical solution of particular boundary value problems.

The decoupling of the axisymmetric problem in the case of axisymmetry is discussed, including the
decoupling of the non-axisymmetric biorthogonality into biorthogonalities for the axisymmetric torsion
problem and the axisymmetric torsionless problem.

NOTATION
r,0,¢ spherical coordinates
Trry Troy Toos Too, Toe Tow  stresses in spherical coordinates
K first invariant of the stress tensor
V?  Laplacian operator
v, E material elastic moduli
a radius of truncation of the cone
cone angle for the cone
F,C,D auxiliary stress variables
u,v,w displacement components in the r, 6, ¢ directions, respectively
e, Wre» Wee  SMall rotation vector components
{f} stress six-vector
[Wi],[W,]...[Ws] matrices in the matrix differential equation
o " i imaginary unit
m index of non-axisymmetry
bmn nth eigenvalue for the index, m, of non-axisymmetry
Trrmny Fony Tromns Trgmny Cns D the nth eigenstresses for the index, m, of non-axisymmetry
{f..(8)} eigenstress six-vector
Amny Xonny Youns Zmn  constants of integration in the eigenstress expansions
X,Xo €OS @,cos B
H,I,J,K constants associated with stresses due to nonself-equilibrated end loadings
P,"(u) Associated Legendre function of first kind of integer order m, complex degree A, and
argument
(—) complex conjugate
" conjugate transpose
Ginp ((8), Grmp2(0), . . ., Gmps(8)  bi-orthogonal functions
{G.p(8)} bi-orthogonal six-vector.

1. INTRODUCTION

This paper presents a formulation in terms of stresses of the non-axisymmetric end loading of
a semi-infinite cone, truncated a fixed distance from its apparent apex. The problem considered is
a Saint Venant problem since the loaded portion, the truncated end of the cone, represents only a
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small portion of the surface of the cone and the state of stress of the material decays with respect
to the radial component.

The truncated solid cone subjected to self-equilibrated axisymmetric torsionless end loading
was studied by Thompson and Little[1], where Papkovich-Neuber displacement potentials were
used to obtain series expansions for the stresses in terms of Legendre functions of the first kind.
The Fourier coefficients in the series expansions were then evaluated using a least squares
technique. The non-axisymmetric end loading of a truncated cone has apparently not yet
appeared in the literature.

The exact solution of the three dimensional elasticity problem using a stress formulation,
requires the solution of an overdetermined set of nine equations in six unknowns (three Cauchy
equations of stress equilibrium and six Beltrami equations of stress compatibility in three normal
stresses and three shearing stresses). Because of this inherent difficulty with the stress
formulation, in particular with the equations of compatibility, investigators of three dimensional
elasticity problems generally prefer the displacement formulation, involving the solution of a
determinate set of three equations in three unknown (the three Navier equations of displacement
equilibrium in the three components of the displacement vector). However, the method of
solution adopted in this work, and in Klemm and Fernandes[2], circumvents the difficulty with
the stress formulation through an extension of the method used by Johnson and Little [3] in their
investigation of the semi-infinite strip.

In the stress formulation to follow, the three stresses T.,, T, and T, are retained to allow
specification of the stress boundary condition on the surface r = a of the cone. Three auxiliary
variables F, C and D, which are of the order of stresses with regard to integration, are derived to
integrate certain of the Beltrami equations of stress compatibility and to reduce the
overdetermined set of nine field equations in six unknowns to a determinate set of six field
equations in six unknowns. Additionally, the auxiliary stress variables carry the information of
the displacement boundary conditions, and have the ability to represent the homogeneous
boundary conditions on the stress free surface.

A separation of variables of the resulting vector partial differential equation yields a
non-self-adjoint vector ordinary differential equations which is seen to be an eigenvalue problem.
Vector eigensolutions are obtained, the components of which, the eigenstresses of the elasticity
problem, each decay at the same rate with respect to the radial coordinate. The eigenvectors,
themselves, are not orthogonal, but an adjoint problem is defined which is seen to have the same
eigenvalues as the separated field equation and whose vector solutions are pairwise orthogonal to
the eigenvectors of the original problem with differing eigenvalues. A biorthogonality relation is
derived in this paper to permit the numerical determination of the generalized Fourier coefficients
of the vector cone angles.

The non-axisymmetric end loading problem is reduced to the axisymmetric torsion and the
axisymmetric torsionless end loading problems, and the nature of the ensuing decoupling
between these two problems is studied.

The convergence of the eigenfunction expansions is not studied in the present work, but
previously published work on related geometries (e.g. the axisymmetric torsionless loading of the
cone in Klemm and Fernandes[2]) show a reasonably rapid convergence for smooth loadings.
Similar convergence can be expected for the present problem.

2. THE EIGENFUNCTION EQUATIONS

In the absence of body forces the stress equations of elastostatics, in spherical coordinates
0=r<w,0=60<m 0= ¢ <27), may be written as three equations of stress equilibrium:

r2o(r’T ) ar+ (rsin 0)'9(T,e sin 0)/d0 — 1 (Tee + Tyo) + (rsin 8) 'aT /0 =0 (2.1)
r2a(r*T.)or + (rsin ) ' 9(Tes sin 0)/30 + (rsin 0) '3 Tefdp — 1 ' Ty cot 8 =0  (2.2)
r23(r’T.,)ar + (r sin® 8) ' 3(Tey sin” 6)/36 + (r sin 8) '9T,e/ 0 =0 (2.3)

and six equations of stress compatibility:
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V2T, —4r 2T, —4(r* sin 8)'3(T.s sin 0)/30 — 4(r* sin 0) ' 9T,/ 8¢ + 2r *(Toe + Tss)
+(1+v)'3°Klar*=0 (2.4)

V2Too — 2(r* sin® 8) ' Too + 4r 29T.o/ 30 — 4(r* sin 8) ' cot 83Tes/ 3 +2r T, + 2r >T,, cot’ 6
+(1+ ) {r'oKlar+r?3’K[36°}=0 (2.5)
V2T 4o — 2(r* sin® 8) ' Tyo +4r >T,s cot 6 + 4(r* sin 0) ' cot 83Tes/ dd
+2r 2T cot? @ + 4(r* sin 6) ' T,o/0¢ +2r °T,,
+(1+») {r'aK/ar + r* cot 93K/36 + (r* sin® 6) '6°K/d¢*} =0 (2.6)

V2T, — r 25+ cot? 6)T,e — 2(r* sin 6) " cot 99T,/ — 2(r” sin §) ' 8Tes/ 3¢
+2r723T../86 — 2(r* sin 8) ' 3(Tss sin 6)/30 + 2r 2Tys cot 8 + (1+ ) {3%(KIr)[3r30} =0 (2.7
V2T, — r (5 +cot® 6) T, — 2(r* sin” 8) ' 3(Tye sin” 8)/36 +2(r’ sin )" cot 80T +/3¢
+2(r* sin 8) ' aT./3¢ — 2(r* sin 8) 8T 4l 3 + (1 + v) {3*(K/r sin 8)/d¢ar} =0 (2.8)
V2T ~2r (1 +2 cot® ) Tos + 2(r” sin 8) ' cot 03T ee/ ¢ + 2(r* sin 8) ' 9T,/ 3¢
+2r % sin 03(T.o/sin 6)/36 — 2(r* sin 0) ™" cot 89T 4s/ b + (1 + »)'{r ?3*(K/ sin 9)/3¢30} =0

2.9
where v is Poisson’s ratio, K is the first invariant of the stress tensor
and
22 20 o in 0t sin g1 s
Vi=r arr ar+(r sin 6) 30s1n030+(rsm0) Y (2.10b)

is the Laplacian in spherical coordinates.
The problem considered is that of an isotropic elastic truncated cone occupying the region

0<a=r<w
0=6=p .11)
0=¢ =2m
with boundary conditions
T.(a,6,¢)=Twb, ) (2.12a)
T.(a, 6, ¢) = Tr(6, ¢) (2.12b)
T.s(a, 8, ¢) = Trs(6, ¢) (2.12¢c)

where T7, T% and T7, are prescribed loading stresses and

To(r,B,4)=0 (2.13a)
Too(r, B, $)=0 (2.13b)
Tos(r, B, ) =0. (2.13¢)
In addition, the regularity condition
solution->0 asr—o (2.14)

is assumed to ensure decaying stress solutions.
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Three auxiliary stress-type variables F, C and D are defined by the following equations:
F = TBO + Tnbtb (215)
d(rC)ar = (sin 8) 8[aT.eldd — 3(T,s sin 8)/80]/dd — (1 — v)(1 + v)'9(F + T..)[36 (2.16)

a(rD)/ar = —d[(sin 0) '3T,+/d¢ — (sin 8)"'(T,, sin 6)/36]/36
—(1-v)-(1+v)"(sin®)'o(F+ T.)o¢p (2.17)

where the displacements u, v and w in the r, § and ¢ coordinate directions, respectively, are
related to the auxiliary stress variables through the relationst

(1= v)rF = 2vrT,. = E{2u + (sin ) ' 3(v sin 8)/36 + (sin 6) 'dw/d¢] (2.18a)
2(1+ v)r(C — T,s) = E[2v ~ 20u/ 50 + (sin 8)3{dv/dd — d(w sin 8)/36}/0¢) (2.18b)

200+ v)r(D—T,s) = E2w — 2 (sin 8) '3u/3¢ — 3{(sin 8)'dv/ 3¢ — (sin 8) 'a(w sin 9)/30}/36].
(2.18¢)

The auxiliary variables F, C and D are used in conjunction with the regularity condition at
infinity (2.14) to integrate the Beltrami equations of stress compatibility.
Adding eqns (2.4)-(2.6) yields
V’K =0. 2.19

Substituting (2.16) and (2.17) in (2.19), integrating, and setting the function of integration to zero
in accordance with the regularity condition (2.14), one has

AF +T.)or—(1+v)-(1-v)"'(rsin 8)"'[3(C sin 8)/36 + 3D/ 3] = 0. (2.20)
Similarly, the use of eqns (2.1), (2.2), (2.16) and (2.7) yields
r ' o(r*Te)lor+(1+v)"'3(F —vT,)/d0 + C =0. (2.21)
Finally, eqns (2.1), (2.3), (2.17) and (2.8) yield
r '3(r*T.e)ar+(1+v)" (sin 8)'a(F - vT,,)la¢ + D =0. (2.22)

Equations (2.1), (2.16), (2.17) and (2.20)-(2.22), which represent a system of six equations in six
unknowns, can be represented as the matrix partial differential equation

[Wila{t} or + [Walr~Hf} + [Walr~'8{8}/ 36 + [W.]r ' cot 84{t}/ a0
+[Ws](r sin 6)'3{t}/0¢ + [We)(r sin 6)'3*{£}/ 9806
+[W-)(r sin® 8) ' 0%{t}/ 3¢ + [Walr ' 9*{1}/ 067 =0 (2.23)

#The auxiliary variables C and D are seen to be related to the small rotations through
C=E(1+v) '[w,e—(sin 8) ' dweel 3]
D =E(1+v) [0,y + dwesl96]
where the rotations are given by

2are =r"'3(rv)for — r~' oul o0
2w, =1 '3(rw)/dr ~ (r sin ) ' oufdd
2wes = (r sin 8) '[3(w sin 6)/36 — dv/d].
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where
T, | [0 0 0 0 1 0]
F 00000 1
| T oo 100 0
W=7, ™I=15 601 0 of
c 11000 0
D | 1 0 0 0 0 0]
0 0 0 0 1 0]
0 0 0 cosec’ 0 0 1
0 0 2 0 1 0
0 0 0 2 0 1},
(W2l = (1+v)
0 0 0 0 ——t cotf O
(1-»)
2 -1 coté 0 0 0
C1-v 1-v ] 0 0 0 0 0 0
15y 1+, 00 0 0 000 -1 00
0 0 00 0 0 looo o000
e W Wd=1o 00 o0 0 of
1+v 14w 0 600 00 O
Wl=| o 0 0 0 0 0, 0 00 o0 0 O
1+
0 0 0 0 = 0
L o 0 1 0 0 0l
~ 0 0 0 cotd 0 0 000 1 0 0
1-v 1-» 001000
T+, 1%, <ot6 0 0 0 wa=[0 0 000 0
0 0 0 0 0 0 ““710 0 0 00 0
| - 1 00000 0
W=y 7+ 0 0 0 0 00000 0
_(+v)
0 0 0 0 =)
L o 0 0 1 0 0
00 -1 0 0 0] [0 0 0 0 0 0]
00 000 0 000 -100
00 00000 {000 000
WA= 0 00 0 of Wel=19 00 00 of
00 0000 000 00O
0 0 ooooj 0 0 0 oooj
3. SOLUTION OF THE MATRIX EQUATION
The solution of (2.23) is assumed in the form
B=2 2 Anal "™ "™ {{.a(0)). (3.1)

where the b... are eigenvalues governing the decay of the stresses into the material, m is the
index of ¢ dependence governing the order of non-axisymmetry, and i = \/(—1) is the imaginary
unit.
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Substituting the stress expansion (3.1) into the matrix differential eqn (2.23), one obtains the
eigenvaiue problem

{[Ws]d?/d6* + ([Ws] + cot 8[W.] + im (sin 8)"'[We]) d/d6
+([Wa]+im (sin 8)'[Ws] — m’ (sin 8) *[W-DH{fmn (8)} = Dra [Wil{Ema (6)}. (3.2)

The simultaneous solution of the component equations of (3.2) yields the eigenstresses Trrmn,
Fonny Twomny Con and Dn.. The original eigenstresses Toomn, Tgomn and Tesmn can then be
obtained form the equilibrium eqns (2.1) and (2.3). Representative eigenstresses for the solid cone
are then obtained as listed in Appendix I and are seen to involve a linear combination, with
coefficients Xy, Youn and Zo.., of terms composed of Legrendre functions P,™ (x) of the first kind
of complex degree, A, and integer order, m, agreeing with the index, m, of ¢-dependence. The
complete list of eigenfunctions is given in Fernandes[4].

Imposing the boundary conditions (2.13a—c) is equivalent to requiring the following:

Toomn(8)=0 (3.3a)
(bon — DI2m* = cos® B) (sin B) ' +cos B d/dO1 T pmnl 8)]0-s)]
+im(14 v) ' [ban(1+ ¥ = boa) + v (cOt’ B — m’ (sin B) )}Fnn(B)
+im(1+ ») " [Ban(¥bme — 1 = v) = (cot® B —m? (sin B) )] Trrma (B) =0 (3.3b)
— iMbmn (sin B) ' Coa(B) + [im (sin B) > cos B + im (sin B) ' (d/d6)
~ (bmn — 1)((d/d8) = cOt B T omn(8)|6-p + im(1+ v) "' cOt B(Trmn(B) ~ vFun(B)) =0.  (3.3¢)

Equations (3.3b, ¢) are obtained by using the compatibility eqns (2.8) and (2.9), the equilibrium
eqns (2.1)=(2.3), and the boundary conditions (2.13, a—c).

Applying the boundary conditions (3.3a~c) to the eigenstresses for the solid cone yields three
homogenous equations in the unknown coefficients X..., Y., and Z... A non-trivial solution
requires that the determinant of these three equations be zero, giving the condition from which
the eigenvalues b... were calculated. The eigenequation was solved numerically on an IBM 370
digital computer following the method described by Thompson and Little[1], and the first few
eigenvalues are presented in Table 1 for various cone angles and various indices of
non-axisymmetry.

The initial roots for m =0 and m =1 are bo,=b,, =2 and be»=b»=3, and correspond,
respectively, to the stresses due to a net force applied at the tip of the non-truncated cone and to
an applied net moment. For the axisymmetric case represented by m = 0, the problem decouples,
with the real roots governing the decay of the stresses due to axisymmetric torsion and the
complex roots governing the decay of the stresses due to axisymmetric torsionless loading. For
the non-axisymmetric cases, m = 1, the torsion and torsionless problem do not decouple, and the
solution requires two sets of decay parameters: a complex series interlaced with a real series.

The stress and displacement solutions due to both self-equilibrated and non-self equilibrated
end loads are listed in Fernandes [4].

4. THE ADJOINT PROBLEM

Since the eigenvalue problem (3.2) is non-self-adjoint, the eigenfunctions, themselves, are not
orthogonal, Biorthogonal functions can be obtained, however, from the adjoint problem arising
from the generalized non-axisymmetric bi-orthogonality relation.

Using the notation

(7) = complex conjugate
[ 17 = conjugate transpose,

and setting

B
5= (e = o) [ (G O)F TW (0 5, @0
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Table 1.t v=03

B m n Complex roott Real root
15 0 1 11.917 +i5.085 21.149
2 24.662 6.160 33.671
3 36.906 6.892 45.899
1 i 17.952+i5.618 12.362
2 30.556  6.551 27.107
3 42804 7.175 39.590
2 1 9.596 +i3.527 17.355
2 23.283  6.064 32.533
3 36.064 6.875 45.174
31 14.121+i4.274 22.013
2 28.307 6.438 37.712
3 41336 7.157 50.543
4 1 18.417 +i4.821 26.518
2 33.150 6.765 42.713
3 46.443  7.409 55.756
45 0 1 5.037+i1.352 8.139
2 9.261 1777 12.278
1 1 7.070+i1.574 5.401
2 11235 1912 10.125
2 1 4.500 +i0.907 7.102
2 8.896 1.730 11.969
750 1 3.753 +i0.046 5.604
2 6.221 0.570 8.041
1 1 4.971 +i0.406 4213

tA more extensive table with a greater number of significant
figures is given in Fernandes [4].
1The complex conjugate is also a root.

expanding by use of the differential eqn (3.2), and integrating by parts, one has

I =1 = )14 1) ' Gompt = (1 + 1) " Grps} Tormn {1 = )1+ 1) ™"+ Gonp1 + (1 + ) "' Grp3} Frnn
+{=(1+ 1)1 = 1) "' Gunp5}Conn + {im (sin 8) ' Grp1 — Ot §Gpp2 + AGmp2/d 6
= Grp2 4140} Tromnlo® 4.2)

where the components
{GMP(O)}T = {G_"Ipl(e)’ Gmp2(0)’ Gmp3(0)’ Gmw(@), GMPS(G)a G-MP6(0)} (43)
of the ajoint vector are obtained as solutions to the equation adjoint to the differential eqn (3.2):

{[Wel" d°/d6° + [—[W3] — cot 8[W.] — im (sin 6)'[W]]"d/d6
+ [—d([W,]+ cot 8 [W.]+ im (sin 8)' [We])/d8 + [W,]
+im (sin 0)"'[Ws] — m? (sin 0) [W+] = bpp [W1]1" HGmp (6)} = 0 (4.4)

and are presented in Fernandes [4].

The right hand side of (4.2) consists of products of four of the eigenstresses with the adjoint
components. To obtain the adjoint boundary conditions on the surface 6 = 8, these products
must be reduced to products of three of the eigenstresses with the adjoint components. This
reduction can be obtained through the use of the boundary conditions (3.3b, ¢).

From (4.2), defining

L =bpn(bn — DI 4.5)
and substituting (4.5), (3.3b) and (b.. — 1) times (3.3¢) into (4.2), it is seen that (4.2) contains the

products of three of the eigenstresses (Trmn, Fmn, and T,ema) With expressions involving the
adjoint components. Setting the coefficients of the three eigenstresses equal to zero on the
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boundary 6 = B gives the adjoint boundary conditions in the form:

1= 2)1+ 1) ' Grpt = ¥(1 + 1) ' Gonp3}bmp (b = ) = (1 =) 'x " 'm?
X (I 8) ' Gunps{(mM* = D(1 = x%) "+ Vbpup (bop — 1) = m (1 = x?)

X Bonp (bp — (1 + v — vbmp)} — (1 + V)ﬂimxﬂbmp(;mpz{(x2 -m*(1- x2)7|

= By (Vbp — 1= 1)} =0
[ = 2)A 4+ 1) Grp1 + (14 2) ' G 3} b (B = 1) = (1 — ) ' m*(x sin 6)”'
X Grmps{v(1= m?)(1 = x%) " + By (bmp — 1)(m ™ sin” (1 + v = by ) — 1)}
— (14 1) imx " bopGmp2{p(m® = x2)(1 = %) " + Bonp (bunp — 1 = 1)}1* = 0.
{im (sin 8) ' Gp1 ~ cOt 8Gop2 + AGirp2/dO}bmp (B — 1)
=201+ )1 = p) 'imx " Gups{(x* = M1 = x*) "' = (bmp — 1)}

— Bonp (Bmp = 1)(x* = 2m)(x sin 8)™' Gop2)o® = 0.

(4.6a)

(4.6b)

(4.6¢)

Substituting the adjoint boundary conditions (4.6a—c) into (4.1) and (4.2) yields the
non-axisymmetric bi-orthogonality in a form similar to that obtained by Flugge and Kelkar[5], in
their discussion of non-axisymmetric problems of the cylinder. The biorthogonality, however, is
seen to contain products of the eigenvalues and the corresponding eigenfunctions, and since such
terms measure the decay of the applied loading into the material, they are not suitable for the
prescription on the boundary. As in Klemm and Little{6], the system of eqns (3.2) are used to
convert derivatives in the r direction to derivatives in the 8 and ¢ directions and thus convert the
variables to a form suitable for specification on the surface r =a. The non-axisymmetric

biorthogonality is now obtained as:

(Brun = bonp) [ L " [Gonp t{Bonn(Bonn = 1)Cmn} + Gonpo{ Bonn (B = 1) Do}

+ Gonps{(Brn + 1)Cone + 2 Tromn + (14 ) (d/d0)[(Brin + 1 + V) Frin = 30T oronn

— v (3in 6) " iMTrsmn — v (3i0 8) " d (SIN Tromn)/d 01} + Gop s (B + 1)
X Doun 4 2T romn + (14 v) 'im (i ) ' {(Bn + 1+ ¥)Frin = 30T rrmn
— vim (5in 0) ' Tromn — v (sin )" d (sin 6T ema)/d 61}

+{(1+ 1)1 = ¥) (1 = bn)}Gompsiim (sin 8) ' Dy + (sin 6) ' d (sin C,na)/d 6}
+ Gpe{[2+ (1 = v) 'vm*(sin )] Ty = [Bomn + 1+ (1 + ») 'm? (sin 8) 7]
X Frn + im (5i0 8) " (Dima + 3 Tromn) + (sin 6)7' (d/d8) (sin 8[3 Tromn + Conn

+ (14 2) " d(Foun = T )l d0)]}] 40 = [[(1 + )" Gimp {1 = v )by + 1) + v (5in 6) 7}

—(1+ ) "im (c08 0) "' Gopo{(1 = 2¥) cot’ 8 + (1 + »)"'(¥* + v — )m’ (sin §)’
+ (B +2)(1 — v) — w2, + (1 + v)'v* (sin 8)'(d/d8) sin 6 (d/d8)}

—v(1+v) " {im (sin )" dGmp/d0 + (bmp + 1)Gimps}

~ (1= v)m*(sin 8 c0s 8) "' Gups{¥(bmp — 1)+ m 2 sin” O(vbip+ v — by — 1)
+ (1 +v)'(1—m *sin 6 (d/d6) sin 8 (d/dO)}) Trrme + [(1 +v) !

X Gopt{(1 = )2 = Boun = bmp) + m?* (sin 8) 2} — (1 + »)"'im (c0s 8) ' Gy

X {(1+v)"'v (sin 8)' (d/d8) sin 6 (d/dB) + (1 = brun Y 2bmn + b + 1)

+ Qb — D+ (=2 cot? 8+ 1+ 1) 'Q—vIm’ (sin @)} -1+ »)™"

X im (5in 8) ' dGpp2/d0 + (1 + 1) 'Gops{l = ¥ = byun — bmp} — (1 = )"
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X m?(cos 0 $in 8) ' Gups{(v —2) + m " $in® 0(bZp + Dmpbmn + bin — 2bin = 2bmp + ¥)
+(1=»)"'v(1 - msin 9 (d/d6) sin 6 (d/d8)}1Fmn + [{(1 - v)(1 + )"
X Gmp1 = V(1 4+ 1) ' Grmps} — (1= ¥) ' m* (cos 8 sin 8) ' Gomps{v + m 7 (sin” §)
X (Vbmp + 20 = 1)} = (1 + )" im (08 8) (1 = Vbmp — 30)Grp2] X [(sin )™’
X (d/dB8)(Tromn sin )]+ [(1 + »)"im (5in 0) "' Grup1{¥bmp + bomp +2}
+ Gup2{(1+ #) ' (Wbp + 2By +3 — v)m* (sin 8 cos 8)' —2(bm, + 1) cot 6}
+ (bmp + 1) dGnp2/dO + Grmpa{—(1 + ») ' vim (sin 6) '}
+(1= 1) "'im (50 0) ' Gups{(vhrmp + 2bmp +3) tan 6 + (2 + v)m>— 21 + »))
X (sin 8 €0s 8) "N Tvomn + [(1+ ) 'wim (OS 8) ' Gmp2— (1 — ) 'v (cos 8) ™'
X $inl 0Gpmps] [(sin 8)™' (d/d6) (sin 8Cpn )]} + [im (sin 8) ' Grmp:
+ Gopaf(1+ 1)+ v)m* (sin 0 cos §) ' — 2 cot 6} + dG.,po/d6

£ (14 2)" @+ v)im (cos o)*‘Gm,,swmw] _a. 47

The Fourier coefficients A... in the non-axisymmetric stress expansion (3.1) can now be
evaluated through the use of the biorthogonality condition (4.7) following the method outlined
below.

S. THE SOLUTION OF SPECIFIC BOUNDARY VALUE PROBLEMS

The boundary value problems which can be solved are those of a truncated cone subjected to
applied stresses or displacements on the surface r = a, with the surface 8 = g being stress free.
Using the stress formulation, one must first transform all displacement end conditions into
stress-type end conditions through eqns (2.18a—). The prescribed stress vector is therefore
given by

{}y" ={T%, F*, T, Tr, C*, D*} (5.1)

where the superscript p denotes prescribed values. Since the prescribed values of some of the
components are unknown on the surface r=a, they are replaced by their formal series
expansions, following the method of Johnson and Little[2].

The eigenstress vector on the surface r = a is represented by

{£(a, 8, )} = Ha {fo(0)} + Ja > € {£,:(0)} + Ja > e {f02(6)}

+ Ka{112(0)} + D D Amad ' €™ {fnn ()} (5.2)

where the A,.. are the Fourier coefficients of the eigenstress expansion corresponding to
non-axisymmetric self-equilibrated end loadings, and are to be determined. The first four terms in
(5.2) are the stresses due to applied non-self-equilibrated end loading, and the constants H, I, J
and K are obtained from the conditions of static equilibrium.

Performing a Fourier analysis in the ¢-direction on the prescribed function, the vector (5.1) is
divided into functions of ¢, each associated with a different index, m, of ¢ dependence.
Following the method of Johnson and Little[3], one obtains from the general bi-orthogonality
(4.7), for each value of m and k, a single equation in infinitely many unknowns of the form

Imk{fp} = ANk, (53)

Here L. is the kth biorthogonality relation for the index, m, of ¢ dependence corresponding to
using the adjoint functions associated with the eigenvalue b.., and N.. is the normalization
constant. The set of all these equations for k =1,2,...constitutes an infinite set of linear
equations in the infinite number of unknowns A, Amo, ..., and may be solved by truncation.
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6. THE AXISYMMETRIC PROBLEM

When the general non-axisymmetric end loading problem of the three dimensional truncated
cone is reduced to the axisymmetric case, it decouples into a pure axisymmetric torsion and a
pure axisymmetric torsionless end problem. The general axisymmetric case is a superposition of
these two problems.

The axisymmetric case is subject to the condition that both the field eqns (2.1)-(2.9) and the
boundary conditions, eqns (2.12) and (2.13) be independent of ¢. The system of eqns (3.2)
decouple into a set of two equations in the two axisymmetric torsion unknowns, D and T, and a
set of four equations in the four axisymmetric torsionless unknowns T,,, F, T,, and C. This latter
system of equations is studied in Klemm and Fernandes [2], where a direct derivation is given for
the axisymmetric torsionless biorthogonality along with representative numerical work.

Alternatively, these problems may be solved by reducing the non-axisymmetric results. The
axisymmetric torsion eigenstresses are obtained by multiplying the non-axisymmetric
eigenstresses by m and then setting m = 0:

Trs0n = Aon(bon —2)" sin § (d/dx)Pp,,(x) (6.1a)
D()n = A()n sin (d/dx)Pbo,.—z(X) (6-1b)
Togon = ~Aonbon [(bon = 3)P g, —2(x) — 2(bon — 2)_l (d/dx) Py, 3(x)] (6.1c)

where the constant Ao, is given by
~i[(1+¥)"'(1 = v)bon(2bon = 1)™' Xon + Zon] = Aon (6.2)

and where P,(u) are the Legendre Functions of the first kind and the argument x = cos 8. The
remaining eigenstresses Trron, Fos, Treon, Con, Teeon, and Tyso are taken as identically zero.
The axisymmetric torsion eigenequation is obtained as

(bon = 3Py, -2(x) = Abon —2) (d/dX)P g, 5(x)]6p = 0. (6.3)

where the first eigenvalue bo, =3 corresponds to the stresses due to an applied moment on the
surface r = a. The eigenvalues for the axisymmetric torsion end problem of the truncated cone
are all real, as Purser (see Love, [7]) showed for the analogous problem of the cylinder.

The axisymmetric torsion displacements are obtained from the non-axisymmetric displace-
ments as

Eu=0 (6.4a)
Ev=0 (6.4b)

E.=Jr? (%) (14 2)sin 8+ 3 Aowr o V214 p)bs! sin 8 (d/dx) Py, o(x).  (6.4c)

The Fourier coefficients Ao, in the stress and displacement expansions can be evaluated
through the use of the axisymmetric torsion biorthogonality relation obtained as a reduction of
the general biorthogonality (4.7):

Multiplying the non-axisymmetric adjoint stresses by m, and then setting m = 0, yields the
axisymmetric torsion biorthogonal functions:

G_OPZ = i(bOP - 1)71[(b0p - 3)(2b0p - 5)_1R()p + T()p] Sin2 0 (d/dx)Pbopvz(X) (653)
Gops = i[(bop —3)(2bo, —5) 'Rap + Top] sin® 8 (d/dx)Ps,,-2(x) (6.5b)
G_Opl = G_OpS = G_OPS = G()p() =0 (6.56‘)

where adjoint relations for the axisymmetric torsionless problem are required to satisfy

TOD = _(b()p - 3)(2b0p - 5)_1R0p (66)
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to eliminate the terms of the adjoint functions singular for m =0. The reduction of the
non-axisymmetric biorthogonality to the axisymmetric torsion then yields

(bun = bog) [ 1G(8) - Dex(8) + Goru(8) - Ton(BY}d =0 6.7

and this biorthogonality can be used in the evaluation of the generalized Fourier coefficients in
the manner described in Section $.

For the pure axisymmetric torsionless problem the terms of eqns (3.2) which are singular for
m =0 must be set equal to zero. That is, the constants A, of eqn (6.2) must be identically zero or

Zon = —(1+ 1) (1 = ¥)bon(2bon — 1) Xon. (6.8)

Imposition of the boundary conditions on ¢ = gives the eigenequation governing the
axisymmetric torsionless problem derived earlier by Thompson and Little[1]. The roots of this
equation after the first are all complex, occurring in complex-conjugate pairs. The lowest
eigenvalue, bo; =2 corresponds to a net axial force, and the Fourier coefficient corresponding to
this term may be evaluated by net applied force considerations. A detailed discussion of this case
may be found in Klemm and Fernandes(2] and Fernandes [4].

SUMMARY AND CONCLUSIONS

The present work contains a vector stress formulation for a class of elasticity problems in
spherical coordinates. As such it demonstrates the use of the Beltrami equations of stress
compatibility in the solution of stress loading problems and provides an alternative to the more
usual displacement potential formulations of three dimensional elasticity. The methods of
Johnson and Little[3] are extended to permit the calculation of the generalized Fourier
coefficients of a vector eigenfunction expansion for end loading problems of the truncated cone.
The parameters governing the decay of the solution in the radial direction, hence the width of the
Saint Venant boundary region for the end loading region, are given for the first few degrees of
non-axisymmetry.
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APPENDIX I
The stress and displacement eigenfunctions
The stress eigenfunctions include:
T, =Hr % (1+x0-2Q2-v)(1=20) "x)+ Ir €21 — xo0) (1 + xo) ' (sin B)" sin 0 {(1+ xo)(1 + x0) "' = 2= »)(1 = 2») "'}
+Kr? e sin 0{(1-20)' 5 - w)x(1 +x0) "' (1 + x) 1+ XY 1+ DD At mn €™ T, (6). (ALD)

To =Hr?sin 0(x — xo}(1+x)"" +Ire“[(1-xo)5in B) {2x + D1 +x) ' = x(1 + x0) "}
=(1+x) " sin g1+ Kr e {(1 4+ v)(1 - 20) " (xo> — £} + x0) ' + (xo— x)(1 + x)™'}

+ 2 2 At €™ Ty, (6) (A12)
T = Ir%i € [(1 - x0) (sin B) {(1+x0) ' —(1+2x)1 + x)7'}+ (1 +x) ' sin ] +Jr>sin 8

+Krie® {(1-v)(1=20) (o~ DX —x + (1 +X) 1+ )71+ D0 D Al " €™ Trgnn () (A1.3)
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where x =cos 8, xo=cos 8 and where

Toomn = X270+ 2 B (Bun + 1) = 201+ 2D 2 = 3) " Pir ()] + VPP 5(x)

Toomn = Xoun[27' (1 + )" (02 = 3bnn + 8= 20) (B — 2)2b1me — 3))" sin B (d/dx)

X Pe )+ (14 0) (1= 0)Bun = MU(2brn = 1)(Be —2))™" (sin )" P (x)]

+ Youn (Brn = 2" 10 8 (d/dX)PT,5(X) + Zonn(Bun —2) " (sin 0) ' PP, _o(x)
Tromn = Xon[(1 + 1) ' (1 = )it " (Bpn —2)"" si01 8 {BrnPi,, -1(X)

= (bw = MY 2B = 1Y (@IdX)PE )+ 27 (14 0) ' (=b2in + 3y — 4+ 20)

X (Bn = 2)2ben —3))""im (50 )" P, (X)] + Youu [ =ittt (e —2)”" (sin 6) "

X P s+ Zya[~im " (b —2) " sin 6 (d/dX)PL, —200)]

(Al.4)

(ALS)

(AL.6)

where P,"(u) is the associated Legrendre function of the first kind of integer order m, complex degree A and with real

argument, .



